

ੰ contract con

ø
 Example a state state

கைகைக

Download details: IP Address: 171.66.16.71 The article was downloaded on 02/06/2010 at 04:10

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the Vapnik–Chervonenkis dimension of the Ising perceptron

S Mertens[†]

Institut für Theoretische Physik, Otto-von-Guericke Universität, Postfach 4120, D-39016 Magdeburg, Germany

Received 26 February 1996

Abstract. The Vapnik–Chervonenkis (vc) dimension of the Ising perceptron with binary patterns is calculated by numerical enumerations for system sizes $N \leq 31$. It is significantly larger than $\frac{1}{2}N$. The data suggest that there is probably no well-defined asymptotic behaviour for $N \rightarrow \infty$.

מה המה ההמה המה המה

$$\Delta(p) = \max \Delta(x^1, \dots, x^p). \tag{1}$$

ੱ better tille tille

$$\Delta(p) \begin{cases} = 2^{p} & \text{if } p \leq d_{\text{VC}} \\ \leq \sum_{i=0}^{d_{\text{VC}}} {p \choose i} & \text{if } p \geq d_{\text{VC}} . \end{cases}$$

$$(2)$$

† E-mail address: stephan.mertens@physik.uni-magdeburg.de

0305-4470/96/080199+06\$19.50 © 1996 IOP Publishing Ltd

L199

$$\sigma = \operatorname{sign}\left(\sum_{i=1}^{N} J_i \xi_i\right) \tag{3}$$

և

ု<table-cell>
 Since interest in neural networks with the since interest in the since interest in the since interest in the since interest interest

仗, konn, konn,

லы высковы выско

$$\boldsymbol{\xi}^{(0)} = (-1, -1, \dots, -1, -1)$$

$$\boldsymbol{\xi}^{(1)} = (-1, -1, \dots, -1, +1)$$

$$\boldsymbol{\xi}^{(2)} = (-1, -1, \dots, +1, -1)$$

$$\vdots$$

$$\boldsymbol{\xi}^{\frac{1}{2}(N+1)} = (-1, \dots, -1, +1, -1, \dots, -1).$$

(4)

்ti

$$J = (-\sigma, \underbrace{\sigma_0, \dots, \sigma_0}_{\frac{1}{2}(N-3)}, \underbrace{-\sigma_0, \dots, -\sigma_0}_{\frac{1}{2}(N+1)}).$$
(5)

$$\left|\sum_{i=1}^{\frac{1}{2}(N+1)} \sigma_{i}\right| \leq \frac{1}{2}(N-3)$$
(6)

since at least one σ_i in the sum differs from the rest. As weights we choose

$$\boldsymbol{J} = (-\sigma_0, k_1, \dots, k_{\frac{1}{2}(N-3)}, \sigma_{\frac{1}{2}(N+1)}, \dots, \sigma_1)$$
(7)

where k can be any ± 1 vector with

$$\sum_{i=1}^{\frac{1}{2}(N-3)} k_i = -\sum_{i=1}^{\frac{1}{2}(N+1)} \sigma_i.$$

This proves that the set (4) is shattered and hence

$$d_{\rm VC} \ge \frac{1}{2}(N+3) \tag{8}$$

ç, centeneer, eeneer, ee

] The second trick is of the *branch branch <i>branch branch <i>branch branch branch <i>branch branch <i>branch <i>branch branch <i>branch branch <i>branch branch branch <i>branch branch branch <i>branch branch branch branch <i>branch branch branch branch branch <i>branch branch branch branch branch branch <i>branch branch branch*

$$\Delta(\xi^1, \dots, \xi^P) = \sum_{c=0}^{2^P - 1} \Theta(f_c).$$
(9)

ృ

$$f_{\min} = \min_{c} \{f_c\} \tag{10}$$

迸<section-header>

,且且」。

$$\boldsymbol{\xi}^{(1)} = (-1, -1 - 1, +1, +1, +1, +1)$$

$$\boldsymbol{\xi}^{(2)} = (-1, +1 + 1, -1, -1, +1, +1)$$

$$\boldsymbol{\xi}^{(3)} = (-1, +1 + 1, +1, +1, -1, -1)$$

$$\boldsymbol{\xi}^{(4)} = (+1, -1 + 1, -1, +1, -1, +1)$$

$$\boldsymbol{\xi}^{(5)} = (+1, -1 + 1, +1, -1, +1, -1)$$

$$\boldsymbol{\xi}^{(6)} = (+1, +1 - 1, -1, +1, +1, -1)$$

$$\boldsymbol{\xi}^{(7)} = (+1, +1 - 1, +1, -1, -1, +1)$$

(11)

B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B

$$\boldsymbol{\xi}^{(\mu)} \cdot \boldsymbol{\xi}^{(\nu)} = \begin{cases} \pm 1 & \mu \neq \nu \\ N & \mu = \nu . \end{cases}$$
(12)

־

† Exact orthogonality cannot be achieved for N odd.

്

$$HH^{1} = mI \tag{13}$$

ظ

ә

- $m = 2^n$ (Sylvester type);
- m = q + 1 where q is a prime power and $q \equiv 3 \mod 4$ (Paley type);
- m = 2(q + 1) where q is a prime power and $q \equiv 1 \mod 4$ (Paley type).

$$H_8 = H_2 \otimes H_2 \otimes H_2 \tag{14}$$

with

$$H_2 = \begin{pmatrix} -1 & -1 \\ -1 & +1 \end{pmatrix}. \tag{15}$$

In (14) \otimes denotes the usual Kronecker product.

Figure 1. vC dimension of the Ising perceptron with binary patterns plotted against *N*. $d_{VC} = N$ is an upper bound, $d_{VC} = \frac{1}{2}(N+3)$ is a lower bound provided by the set (4).

[†] The first value of m = 4n where none of them applies is m = 92.

L204 Letter to the Editor

References

- ்
- [2] Vapnik V N 1982 Estimation of Dependences Based on Empirical Data (Berlin: Springer)
- ႄ
- [5] Engel A 1994 Uniform convergence bounds for learning from examples Mod. Phys. Lett. 8B 1683
- [6] Sauer N 1972 On the density of families of sets J. Combinat. Theor. A 13 145
- РРР 2020
- [10] Stambke J 1992 Diploma Thesis University of Giessen
- [11] Krisement O 1990 A Hopfield model with Hadamard prototypes Z. Phys. B 80 415
- їїїїїїїїїїїїїїїїїї