
On the Vapnik - Chervonenkis dimension of the Ising perceptron

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 L199

(http://iopscience.iop.org/0305-4470/29/8/004)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) L199–L204. Printed in the UK

LETTER TO THE EDITOR

On the Vapnik–Chervonenkis dimension of the Ising
perceptron

S Mertens†
Institut für Theoretische Physik, Otto-von-Guericke Universität, Postfach 4120, D-39016
Magdeburg, Germany

Received 26 February 1996

Abstract. The Vapnik–Chervonenkis (VC) dimension of the Ising perceptron with binary
patterns is calculated by numerical enumerations for system sizesN 6 31. It is significantly
larger than1

2N . The data suggest that there is probably no well-defined asymptotic behaviour
for N → ∞.

The Vapnik–Chervonenkis (VC) dimension is one of the central quantities used in both
mathematical statistics and computer science to characterize the performance of classifier
systems [1, 2]. In the case of feed-forward neural networks it establishes connections
between the storage and generalization abilities of these systems [3–5]. In this letter we
will discuss theVC dimension of the Ising perceptron with binary patterns.

The VC dimensiondVC is defined via the growth function1(p). Consider a set of
instancesx and a systemC of binary classifiersc: x 7→ {−1, 1} that group allx ∈ X

into two classes labelled by 1 and−1, respectively. For any set{xµ} of p different
instancesx1, . . . , xp we determine the number1(x1, . . . , xp) of different classifications
c(x1), . . . , c(xp) that can be induced by running through all classifiersc ∈ C. A
set of instances is calledshattered by the systemC if 1(x1, . . . , xp) equals 2p, the
maximum possible number of different binary classifications ofp instances. Large values
of 1(x1, . . . , xp) roughly correspond to a large diversity of mappings contained inC. The
growth function1(p) is now defined by

1(p) = max
xµ

1(x1, . . . , xp) . (1)

It is obvious that1(p) cannot decrease withp. Moreover, for smallp one expects that
there will be at least one shattered set of sizep and hence1(p) = 2p. On the other hand,
this exponential increase in the growth function is unlikely to continue for allp. The value
of p where it starts to slow down gives a hint as to the complexity of the systemC. In
fact the Sauer lemma [1, 6] states that for all systemsC of binary classifiers there exists a
natural numberdVC (which may be infinite) such that

1(p)


= 2p if p 6 dVC

6
dVC∑
i=0

(
p

i

)
if p > dVC .

(2)
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HeredVC is called theVC dimension of the systemC. Note that it will in general depend
on the setX of instances to be classified.

A concrete example for a system of classifiers is given by the well known perceptrons
defined by

σ = sign

( N∑
i=1

Jiξi

)
(3)

where the weightsJ ∈ RN parameterize the perceptron andξ ∈ RN is an instance or pattern
to be classified. The multiplication ofJ by a constant factor does not affect the outputσ ,
so the weights are usually restricted byJ2 = N . For this spherical perceptronthe exact
resultdVC = N has been obtained analytically [7].

The Ising perceptronis a spherical perceptron with the additional constraintJi = ±1
on the weigths. For real valued patternsξ ∈ RN this constraint does not affect theVC

dimension, i.e.dVC = N still holds [8].
Since much of the interest in neural networks with discrete weights is due to their easy

technical implementation it is important to consider not only binary weigths but also binary
patternsξi = ±1. To avoid problems with the sign function ifJ · ξ happens to be 0, one
introduces a threshold2 = ±1 for N even: σ = sign(J · ξ + 2). Since theVC dimension
for the Ising perceptron withN = 2n and2 = ±1 is the same as forN = 2n + 1 without
threshold, we will consider only odd values ofN throughout this letter.

The determination of theVC dimension of the Ising perceptron with binary patterns is
a difficult problem. Analytical calculations based on the replica method [9] are not very
helpful, since this method is suited to calculatingtypical or averagequantities, whereas the
VC dimension is an extremal concept due to the max in (1). For the spherical perceptron
this difference does not really matter, but for networks with discrete weights it is crucial [8].

To get at least a lower bound fordVC it suffices to find a large shattered set by a smart
guess. Consider the set (N odd):

ξ(0) = (−1, −1, . . . ,−1, −1)

ξ(1) = (−1, −1, . . . ,−1, +1)

ξ(2) = (−1, −1, . . . ,+1, −1)

...

ξ
1
2 (N+1) = (−1, . . . ,−1, +1, −1, . . . ,−1) .

(4)

Let σ = (σ0, . . . , σ 1
2 (N+1)) be an arbitrary output vector. To see howσ can be realized by

the binary perceptron, we have to distinguish two cases:

First case: σ = (σ0, σ, . . . , σ ) i.e. the output values for all patterns exceptξ(0) are the
same. This output can be realized by the weights

J = (−σ, σ0, . . . , σ0︸ ︷︷ ︸
1
2 (N−3)

, −σ0, . . . ,−σ0︸ ︷︷ ︸
1
2 (N+1)

) . (5)

Second case: For all output vectors different from the first case, we can assert that∣∣∣∣∣∣
1
2 (N+1)∑

i=1

σi

∣∣∣∣∣∣ 6 1

2
(N − 3) (6)
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since at least oneσi in the sum differs from the rest. As weights we choose

J = (−σ0, k1, . . . , k 1
2 (N−3), σ 1

2 (N+1), . . . , σ1) (7)

wherek can be any±1 vector with
1
2 (N−3)∑

i=1

ki = −
1
2 (N+1)∑

i=1

σi.

According to equation (6), such a vector can always be found. Again we have
sign(J · ξ(µ)) = σµ for µ = 0, . . . , 1

2(N + 1).

This proves that the set (4) is shattered and hence

dVC > 1
2(N + 3) (8)

for the Ising perceptron with binary patterns. This value ofdVC agrees very well with
numerical results obtained by a statistical enumeration method [10, 8]. For this method,
one randomly drawsp binary patterns and calculates1(ξ(1), . . . , ξ(p)) by enumeration of
all perceptronsJ ∈ {±1}N . If a single pattern set with1(. . .) = 2p is found, we know that
dVC > p. Like the replica method, this method is not suited to calculating theVC dimension
in cases where the maximum shattered sets are rare.

There is, however, a method that guarantees exact evaluation of theVC dimension:
exhaustive enumerationof all shattered sets. The shattered pattern sets can be arranged as
the nodes of a tree. The root of the tree is the empty pattern set (conveniently defined to
be shattered). The children of aP pattern node are formed by all those shattered(P + 1)

pattern sets that can be obtained from the parent by adding a new pattern. The recursive
application of this definition gives the complete tree of all shattered sets. TheVC dimension
is the height of the tree. It can be measured by a traversal of the complete tree using
standard algorithms.

The branching factor of the tree is O(2N), its height is O(N), giving an overall
complexity of O(2N2

). This exponential complexity limits the reachable sizeN very soon
and calls for some tricks to reduce the number of nodes.

Before we can think of reducing the number of nodes, we must ensure that every node,
i.e. every shattered set, is considered only once. A±1 pattern can be read as anN -bit
integer (identifying−1 with 0), hence we have anorder relation between the patterns.
If we add only patterns to a set which are larger than the current elements of the sets,
uniqueness of the nodes is guaranteed.

The first trick to reduce the number of nodes exploits the symmetry of the problem: a
shattered set remains shattered if we multiply one of its elements, or theith entry of all
elements by−1. Therefore we may restrict ourselves to pattern sets where all elements start
with −1: ξ = (−1, . . .) and we can fix the set containing only the pattern(−1, −1, . . . ,−1)

as the root of the tree.
The second trick is of thebranch and boundvariety and exploits the fact that we are

not interested in the complete tree but only in its height. Let us assume that we have an
easy-to-calculate upper bound for the maximum height that can be reached from a given
node. If this upper bound turns out to be lower than the maximum height already found
during our traversal, we can safely discontinue exploration of the subtree rooted in this
node!

The binary outputs of a set ofP patterns can be interpreted asP -bit numberc. Iterating
over all 2N binary weight vectors of our network, we get 2N such output numbersc. If
P < N , some of thec values must appear more than once. Letfc denote the frequency of
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the output valuec. The number of different classifications of this pattern set is given by
the number offc > 0:

1(ξ1, . . . , ξP ) =
2P −1∑
c=0

2(fc). (9)

The fc’s have to be calculated at each node to test whether the pattern set is shattered or
not. If

fmin = min
c

{fc} (10)

is 0, the pattern set is not shattered (at least one classificationc has not been realized). If
fmin > 0 the pattern set is shattered and we can try to enhance it. Each new pattern can
split an existing classification into two (appending a−1 to c for some weight vectors and a
+1 for others), i.e. from each classificationc we get two new classificationsc1 andc2 with
fc = fc1 + fc2. One of the new frequencies is always6 1

2fc. Therefore we have log2 fmin

as an upper bound for the number of patterns that can be added to a shattered set before
we definitely get a non-shattered set.

This strategy allows us to prune many subtrees. ForN = 5, branch and bound reduces
the number of nodes from 77 to 4, forN = 7 from 8389 to 4625.

Even with these tricks, the complexity O(2N2
) is overwhelming. On an UltraSparc I 170,

exhaustive enumeration forN = 7 takes less than a second. ForN = 9, the running time is
6.5 hours! Nevertheless, the results obtained forN 6 9 are already quite remarkable. For
N = 7, the set

ξ(1) = (−1, −1 − 1, +1, +1, +1, +1)

ξ(2) = (−1, +1 + 1, −1, −1, +1, +1)

ξ(3) = (−1, +1 + 1, +1, +1, −1, −1)

ξ(4) = (+1, −1 + 1, −1, +1, −1, +1)

ξ(5) = (+1, −1 + 1, +1, −1, +1, −1)

ξ(6) = (+1, +1 − 1, −1, +1, +1, −1)

ξ(7) = (+1, +1 − 1, +1, −1, −1, +1)

(11)

is shattered, hencedVC = 7—the maximum possible value! Together withdVC = 4 for
N = 5 anddVC = 7 for N = 9, these results do not allow a decent conjecture for the
general expression. However, partial enumerations for larger values ofN indicate, thatdVC

is substantially larger than the value1
2(N + 3) provided by (4).

The largest shattered sets found by exhaustive and partial enumerations share a common
feature: They can be transformed into quasi-orthogonal sets, i.e. into sets, where the patterns
have minimum pairwise overlap†,

ξ(µ) · ξ(ν) =
{ ±1 µ 6= ν

N µ = ν .
(12)

This observation leads to the idea of restricting the enumeration to quasi-orthogonal pattern
sets.

† Exact orthogonality cannot be achieved forN odd.
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To find such pattern sets, the notion ofHadamard matricesis useful (see, e.g., [11] or
any texbook on combinatorics or coding theory). A Hadamard matrix is anm × m matrix
H with ±1 entries such that

HH T = mI (13)

whereI is them×m identity matrix. The rows (or columns) of a Hadamard matrix form a
set ofm orthogonal binary patterns. This implies thatm must be even, but the whole truth is
more restrictive: IfH is anm × m Hadamard matrix, thenm = 1, m = 2 or m ≡ 0 mod 4.
The reversal is a famous open question: Is there a Hadamard matrix of orderm = 4n for
every positiven? The first open case ism = 428.

For special values ofm there are rules for constructing Hadamard matrices [12], e.g.:

• m = 2n (Sylvester type);
• m = q + 1 whereq is a prime power andq ≡ 3 mod 4 (Paley type);
• m = 2(q + 1) whereq is a prime power andq ≡ 1 mod 4 (Paley type).

These rules provide us with Hadamard matrices of sufficient size†. To get from a
4n× 4n Hadamard matrix to quasi-orthogonal binary patterns we either cut out one column
(N = 4n − 1) or add an arbitrary column (N = 4n + 1) and take the rows of the resulting
matrix as patterns. The pattern set (11) is a result of this procedure applied to the 8× 8
Hadamard matrixH8 of Sylvester type:

H8 = H2 ⊗ H2 ⊗ H2 (14)

with

H2 =
( −1 −1

−1 +1

)
. (15)

In (14) ⊗ denotes the usual Kronecker product.
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Figure 1. VC dimension of the Ising perceptron with binary patterns plotted againstN . dVC = N

is an upper bound,dVC = 1
2(N + 3) is a lower bound provided by the set (4).

The restriction to quasi-orthogonal pattern sets allows us to consider larger values of
N , but now the enumeration gives only lower bounds fordVC. Results forN 6 31 are

† The first value ofm = 4n where none of them applies ism = 92.
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displayed in figure 1. The lower bounddVC = 1
2(N +3) achieved by the set (4) is exceeded

for all N > 5, but the theoretic upper bounddVC = N is attained only forN = 7. The
data are not suited for a decent conjecture about a general expression fordVC(N). Even the
mere existence of a well defined asymptotic behaviour forN → ∞ looks questionable. The
VC dimension seems to be sensitive not only to the size but also to the number-theoretic
properties ofN : We observe a jump indVC(N) at N = 2n − 1, i.e. at values ofN where
the corresponding Hadamard matrix is of Sylvester type.

The lower bounds in figure 1 do not rule out the possibility of a much more regular
behaviour of the truedVC(N), including well defined asymptotics. However, if the limit
limN→∞ dVC/N exists, it will probably be larger than 0.5.

The author appreciates fruitful discussions with A Engel. Thanks are also due to
C Bessenrodt for her reference to Hadamard matrices.
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